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ABSTRACT The utility of shell overlays to oyster (Crassostrea virginica) plantings as a cownose ray (Rhinoptera bonasus)

predator deterrence mechanism was examined. Typical industry practice of oyster seed planting was followed in an experimental

design employing treatment areas of 0.5–1.0 acre (0.2–0.4 hectare). Areas were prepared in the LowerMachodoc Creek, Virginia,

by the initial application of shell to insure a stable substrate under planted seed oysters. Seed oysters were planted using standard

industrymethods. Experimental areas were located, two upstream and two downstream, of a constriction in the LowerMachodoc

that dictated differing physical environments in the respective locations with downstream locations being more exposed to

northeast wind–driven stresses and, historically, a greater incidence of ray predation. Once oysters were planted, two of the areas,

one upstream and one downstream of the aforementioned constriction, were additionally treated with a shell overlay as

a predation deterrent. Oyster seed were planted in the experimental plots in February 2012. Market oysters were harvested from

the experimental plots in December 2013 and January 2014. Final harvest data demonstrated that shell overlays do not offer

additional protection to planted oyster seed with respect to possible cownose ray predation. Evidence of predation in the form of

characteristically broken oyster valves were recorded in all treatment areas. Concurrent stomach content analysis of rays captured

at the study location and observations of fouling community associated with the cultured oysters taken during the harvest

operation indicate broad dietary preferences for rays when such a variety exists in the foraging region. For rays, oysters are not the

singular preferred diet item, although localized and intensive feeding on oysters remains an option with a wide foraging range.

Areas without overlay demonstrated higher production than those with shell overlay. Shell overlays are not recommended as

predator deterrents for cownose rays in large deployments of unprotected oyster seed.
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INTRODUCTION

Enormous efforts are in progress both to restore the oyster
[Crassostrea virginica (Gmelin, 1791)] resource of the Chesa-

peake Bay for ecological purposes, driven by Executive Order
13508 (2009), and to rebuild the commercial oyster industry
(landings from the Virginia Chesapeake Bay have increased 12-

fold in the past decade). Both goals involve the placement of
large numbers of oysters on the bay bottom in essentially
unprotected environments that leave them subject to predation
loss. Much has been debated on the role of cownose rays

[Rhinoptera bonasus (Mitchill, 1815)] in predation losses of
oysters thus planted (Smith & Merriner 1985, reviews in Fisher
2009, Fisher et al. 2011, 2013). Rays are opportunistic, and their

impacts can be locally very destructive leaving few, if any,
oysters alive (Fisher et al. 2013). Two options exist to control
losses to ray predation: reduce the number of predators and/or

improve exclusion of predators. These are additive options, one
does not exclude the other, but the options have differing data
needs to adequately design the optimal approach, differing time

courses of implementation, and differing scales of impact.

A directed fishery for rays would reduce the number of

predators and thus, it is presumed, would reduce the loss of
oysters to predation. It is technically feasible to harvest large
numbers of cownose rays to develop attractive products; how-

ever, any fishery is dictated by regulations and guided by
principles of sustainable harvest embodied in the Magnuson
Stevens Fishery Conservation and Management Act (Public
Law 94–265). These principles are based on a quantitative

knowledge of the life history of the target species and a current
stock assessment. There are significant data gaps in appropriate
knowledge to develop a comprehensive management plan for

cownose rays in the Chesapeake Bay. The cownose ray is
amigratory, long-lived specieswith large body size, low fecundity,
relatively late age of maturation, and distinct schooling and sex-

specific behavior (Smith & Merriner 1987, Grusha 2005). Even
with the limited available data, these life history traits dictate that
a sustainable harvest can only remove a modest percentage of the
extant stock in any year, or the prospect of stock collapse arises

(see Frisk 2010). There is a need for better life history data and
a stock assessment to develop a management plan, but time is of
the essence in developing an oyster industry–wide response to the

ray threat. On a relative scale, the overall impact of ray harvest on
oyster survival will be small, but locally its impact could be very
high. The time frame for fishery implementation could be several

years as a raymanagement plan evolves. The time and investment
requirements for a fishery management plan provide only mar-
ginal comfort for both restoration advocates and the industry as

the federal government investsmillions of dollars and the industry
is challenged daily by a suite of environmental and supply threats.
A more timely control option is required.

This study was designed to test a concept at commercial scale. Thus,

units of reporting include both International System of units and those

commonly used in Virginia commerce for oysters. Important conver-

sions used in this manuscript are as follows: 1 VA bushel¼ 3003.9 inch3¼
49.23 l; 1 acre¼ 0.405 hectare; 500 oysters/bushel¼ 10.2 oysters/l; 1 U.S.

pint ¼ 0.473 l.
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The development of exclusion approaches to protect bottom
planted oyster seed from cownose ray predation is not a new

idea, but it has been inadequately examined to date because of
scales and cost issues. The project described herein was designed
to provide a large-scale, ‘‘on the ground’’ experimental test that
can be applied in both restoration and commercial enterprises,

with data available in a reasonable time frame (2 y). The project
objective was to evaluate the practice of overplanting of oyster
seed on the existing shell bed as a predator deterrence option

to reduce or eliminate predation loss to cownose rays of those
oyster seed when planted for either restoration or commercial
purposes.

MATERIALS AND METHODS

Two sources of seed oysters are currently available to the

restoration and commercial community. These are from tradi-
tional shell planting actions and spat on shell from aquaculture.
Natural seed can be obtained in abundance in years of good

recruitment, but they are unselected in terms of growth rate and
disease tolerance and are available with a ‘‘date of birth’’ that is
limited to a short time window that in turn dictates period and

maximum size at planting. Spat on shell can be both selected for
growth and disease tolerance and produced over a wider time
window, which facilitates a desired size at time of planting, but

they have a considerable price premium compared with natural
seed. Data provided by either seed source are applicable to the
other in extensive grow-out application.

The present study focused on shell ‘‘overplanting,’’ that is,

covering deployed seed with a light layer of shell as a deterrent
to ray predation. The design required several stages of action
including (1) preplanting preparation of the target area with

shell to insure a uniform base on which the experimental study
would be performed, (2) planting seed oysters by commercial
large-scale methods at a density commensurate with commer-

cial practice, (3) presence or absence (control) of post-plant
overplanting with additional shell (understanding that this
could increase subsequent harvest costs), and (4) varying
harvest strategies if overplanting resulted in differing growth

rates of planted oysters. Careful consideration of each of 1–4
stages was required in that each had modest ranges that, when
considered in combination, provided a large matrix of final

design options. Important in this design phase is realization that
these ‘‘experiments’’ are large and difficult to implement with
complete uniformity because the planting and harvest ap-

proaches use large barges and dredges—the tools of industry
rather than experimental academics. This approach does,
however, insure that final recommendations on optimal com-

binations will be applicable in real-world industry or at
restoration scales. Indeed, the impacts of cownose ray predation
are typically not that of an individual ray but of a school of rays
with a signature in acres, and these schools can be very large

(Blaylock 1989).
The range of values of each variable (1–4) were developed in

concert with the industry partners, Cowart Seafood Corpora-

tion and Bevans Oyster Company, who have long-standing
experience growing oysters at large scales, and the Virginia
Marine Resources Commission, which also has prior experience

with large-scale management and restoration efforts. The study
was completed on commercial leases where there is a history of
oyster production and ray predation. Choice of lease location

was critical in limiting variation in lease characteristics beyond
experimentally determined variables.

The study site was on leased bottom at 1.5–4.0 m depth
maintained by Cowart Seafood Corporation and Bevans Oyster
Company in the LowerMachodoc Creek, Virginia (latitude, 38�
8$ 55#; longitude, –76� 39$ 10#). This is a northward flowing
tributary on the southern shore of the Potomac River (Fig. 1).
There is restricted access into this body of water near the mouth
of the river. Historically, ray predation was low upriver (south)

and high downriver (north) of this feature. Thus, prospective
low and high predation sites were chosen with respect to this
geographical feature.

A pre-experimental survey was completed in February 2012
using a hydraulic patent tong (1-m2 opening) deployed from the
Virginia Marine Resources Commission vessel R/V J.B. Baylor

using the methods described by Mann et al. (2009) for oyster
stock assessment. The surveys focused on resident populations
of known ray prey items [infaunal Mya arenaria (Linne, 1758),

Mercenaria mercenaria (Linne, 1758),Macoma balthica (Linne,
1758), Ensis sp. probably Ensis directus (Conrad, 1843), and
epifaunal mussels, crabs, and amphipods]. Prior studies by
Fisher (2010) found that stomach contents in rays captured

adjacent to commercial oyster grounds were dominated by soft-
shell clams, mussels, and crabs, not available oysters. The pre-
experimental surveys found minimal densities of these shellfish

species in the target site areas. After the pre-experimental site
survey, four experimental areas (A–D, see Fig. 1) were desig-
nated among the lease sites, and their corners marked with

poles. The desired 1-acre minimum area size was achieved at
three of the four areas: A (low predation, with shell overlay) ¼
0.52 acres (0.21 hectare); B (low predation, without shell
overlay) ¼ 1.06 acres (0.43 hectare); C (high predation, without

shell overlay) ¼ 1.13 acres (0.46 hectare); D (high predation
with shell overlay) ¼ 1.06 acres (0.43 hectares). The exception
area, A, was considered a reasoned choice given that other area

options required spatial separation of low predation treatments.
The trade-off of proximity versus size weighed in favor of the
smaller but closer selection of area A. All areas were subject to

initial shell deployment, in February 2012, to insure a uni-
form base for planting. In total, 9,027 bushels (444 m3) were
planted at the following rates: 3,978 bushels (196 m3) or 2,518

Figure 1. Study location in the LowerMachodoc Creek, a tributary on the

southern shore of the Potomac River in the Chesapeake Bay, Virginia. See

Materials and Methods section for additional details.
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bushels/acre (50m3/hectare) on the low predation (A and B) areas,
5,049 (249m3) bushels or 2,305 bushels/acre (46m3/hectare) on the

high predation (C and D) areas. Additional comments on the
stability of the planted regions over the time course of the study are
presented with oyster harvesting data later in the Results section.

Seed oysters were obtained from the James River, Virginia.

These were 2010 and 2011 recruits and were planted during the
period February 15–28, 2012, at a target density of 1,281
bushels/acre (25.5 m3/hectare). The density of seed per bushel

was checked on three occasions during the seed planting pro-
cess. Three replicate counts on the following dates provided the
seed density estimates as follows: February 17 ¼ 1,056 oysters/

bushel (21.4 oysters/l), February 24 ¼ 998 oysters/bushel (20.3
oysters/l), and February 28¼ 975 oysters/bushel (19.8 oysters/l).
Amean value [(1,056 + 998 + 975)/3] of 1,010 oysters/bushel (20.5
oysters/l) was obtained. At a planting density of 1,281 bushels/

acre this is equivalent to 1.33 106 oyster seed/acre or 320 seed
oysters/m2; all sizes included. A total of 4,828 bushels (238m3) of
seedwere planted at 1,010 oysters/bushel for an estimated total of

4,876,280 seed oysters.
Shell overplanting of the target areas was completed on

March 5–9, 2012, at a density of 1,000–2,000 bushels/acre (2–

4 l/m3 or 20–40 m3/hectare). The overplanting rate was
equivalent to a uniform layer of approximately 1–2 shells
thick. Monitoring of the prepared areas occurred on three

occasions during the study period. A diver-based survey
employing quarter meter square quadrats was completed on
April 20, 2012, after the completion of shell overplanting. A
second diver-based survey was completed on September 21,

2012, at the end of the first growing season. A third and final
survey was completed on September 16, 2013, prior to harvest,
this time using a hydraulic patent tong with a 1-m2 opening

(methods by Mann et al. 2009). Absolute density and shell
length (SL; maximum dimension from hinge to the growing
edge) demographics were recorded on all occasions. The

September 2013 survey included examination for signatures
of ray feeding on the crushed valves.

A challenge with all such sampling is adequacy of the
sampling protocol. For stock assessment using the hydraulic

patent tong, the recommendation of Bros and Cowell (1987)
was followed by plotting the SEM with increasing sample
number (n) within a defined stratum (area), with sampling

considered to be robust (i.e., increased sampling produces
sequentially less useful information) when the slope of the plot
decreased. The location of individual samples is typically set by

locating a virtual grid over a plot of the stratum, labeling the
intersections of the grid sequentially, and choosing the sampling
sequence of these intersecting points using a random number

generator. In stock assessment mode (seeMann et al. 2009), this
protocol defines georeferences for each of the intersecting grid
points and thus sampling points. These are located in the field
using the Global Positioning System (GPS) on the sampling

vessel. For the current study, a defined series of georeferenced
points sampled in sequence was not possible because the area to
be sampled was very small and the combination of errors in the

GPS location in the field combined with the inability to
maintain the vessel exactly in the desired location (wind and
tide driven) resulted in a series of effective sampling zones with

considerable overlap. Thus, the approach in both diver and
patent tong sampling was to use a series of haphazardly chosen
sample points within the area boundaries as set in the field by

the permanent corner markers. Real-time plots were made of
SEM versus n in the field: coherence of the SEM values was

consistently observed at sample 5 and the decreasing trend of
the SEM value as n increased from 5 to 10.

Oyster harvest was completed between December 16, 2013,
and January 9, 2014, using a 24-inch (60 cm) wide oyster dredge

operated from a skiff. The collective industry experience has
shown it to be more cost-effective to harvest a complete shell
plant rather than sort by size and return smaller oysters.

Additional data were collected on December 16–17, 2013, to
describe number of oysters/bushel and incidence of ray signa-
tures on broken shells included in the harvest material.

Observations during harvest suggested that oysters were not
evenly distributed throughout the entire original area footprints
and that actions of sand migration, siltation, burial, and/or
physical movement of seed by tidal and storm action may have

modified the original distributions during the two year study
period. Thus, a postharvest resurvey of the four areas was
completed on March 10, 2014, using standard surveying

techniques (Leica 1200 Series GPS, connected to Smartnet
reference network) that locate to the centimeter level (finer than
the ability to function from a small boat given vessel move-

ment). The survey relocated the area perimeter markers, then
ran parallel transects at less than 10-m intervals from boundary
to boundary within each area until the entire area footprint had

been covered. Along transects the bottom was sampled by
sounding pole at 3- to 5-m intervals. Locations where shell
appeared or disappeared were digitally marked by the surveyor,
and subsequently replotted as an overlay on the original survey

plots. Areas A and B (Fig. 2A) had very minor modification;
however, this was not the case for areas C and D (Fig. 2B).

Area A was generally softer than area B. The western

perimeter, line 8–9 to 5 in Figure 2A, was slightly softer than
the inshore eastern perimeter even though shells were still
present. The possibility of mud/sand cover was possible but

difficult to determine with certainty, thus no downward adjust-
ment of shell coverage area wasmade for final density estimates.
Area B was well supplied with shell, even extending slightly over
the boundaries on the western (offshore) perimeter. The total

shell coverage on area A after preparation and seed addition in
April 2012 was thicker than on area B (Fig. 3B), but the two
were comparable by September 2013. Area C, initially planted

without a shell overlay, was only deficient in shell at its
southernmost corner (point 7 in Fig. 2B where hard sand
prevailed) in March 2014. Overall, the bottom in area C was

much better than areaD; the bottomwas harder, and there were
more shells, even multiple layers of shells along the northern
boundary from points 5 to 8. The depths at points N9–N13were

1.5, 1.8, 0.9, 1.2, and 2.1 m, respectively. The exposed shell layer
was thin throughout area D, despite being the location with an
initial overlay and higher initial total shell density (Fig. 3B).
Approximately half of area D had lost its shell cover to burial

over the time course of the study. The sequence of data points
from N1 to N8 in the March 2014 survey is as follows: N1 at
3.66 m had shell present and N2 at 3.05 m, a sand layer, had

buried shell approximately 15 cm below the surface. Transects
on an east–west plane originating at locations N3 (3.05 m
depth), N4 (2.45 m), and N5 (2.75 m) all had surface shell. The

northwest corner of the area had buried shell (approximately
10 cm below the surface) at location N6 (2.75 m). The marginal
surface shell at N7 (3.35 m) had disappeared by N8 (2.75 m), as
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the survey progressed in an easterly direction along the northern
perimeter of the area.

Cownose rays were sampled for gut analysis using tended
longline fishing gear from May through September 2012, with
fishing effort directed when rays were visually observed within

the research plot areas. Longlines consisted of 90 kg breaking
strain monofilament ground line, 100 m in length, with 2-m
gangions placed 10 m apart with 30 size 14/0 circle hooks per
line. Long lines were baited with either menhaden [Brevoortia

tyrannus (Latrobe, 1802)] or peeler crabs [Callinectes sapidus
(Rathbun, 1896)] and fished twice per day (2–4 h soak time) to
target cownose rays. Upon capture, rays were placed on ice,

boxed, and delivered to Virginia Institute of Marine Science for
necropsy. Stomachs were removed by severing the esophagus as
it entered the peritoneal cavity at the cranial side of digestive

tract andwhere the stomach leads into the spiral intestine on the
caudal side. Removed stomachs were placed in plastic whirl-
pack bags, frozen, and held in freezer cold storage until
processed 4–6wk post collection. Frozen stomachs were thawed

in cool water within sealed sample bags for 1–4 h depending on
the size. Once thawed, full stomach wet weights were recorded
to the nearest milligram on an electronic analytical balance. The

stomach contents were then emptied into a petri dish for sorting
and identification, and the empty stomach was weighed. The
overall stomach contents weight was then calculated by the

difference of weights.
With the use of field guides and taxonomic keys, prey items

were identified to the lowest possible taxon and sorted for

collective weights for each food category. Shell fragments of
bivalves were identified to lowest possible taxon and sometimes

to species if sufficient characteristic attributes were found (e.g.,
hinges). Enumeration of prey items was not feasible due to the
level of mastication of food items. Each food category was

weighed to the nearest milligram. The total weight of each food
category was expressed as a percentage of the overall weight of
the stomach contents. Results of stomach content analysis were
reported as occurrence of prey items and percent of observed

prey items in stomachs with quantifiable contents. Spiral valves
were sampled with stomachs to insure there were no prey items
missed, especially hard prey items that are frequently retained

longer within the ray digestive system. Examination of spiral
valves in conjunction with stomachs provide for better enumer-
ation of hard-bodied prey in cownose ray diet (Fisher 2010).

RESULTS

Changes in absolute density of oysters (includes all size

classes), live shell abundance (includes only shell with live
oysters attached), and blank shell abundance (includes all other
shell) measured on each of the three monitoring dates are shown

in Figure 3. The initial survey oyster densities for areas A–C by
diver survey exhibit both considerable variance within an area
(note error bars in Fig. 3A) and differences between areas A–C

and area D, with the latter having higher mean values (90–
130 oysters/m2 versus approximately 320 oysters/m2). The latter
value is in agreement with the densities based on seed planting

Figure 2. Resurvey of (A) areas A and B and (B) areas C andD postharvest. Sequence 1–9 in A defines original boundaries in areaA and B. Sequence 1–8

in B defines original boundaries in areas C and D. Sequence N1–N13 in B defines postharvest boundaries in areas C and D.
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(see above section Materials and Methods on natural oyster
seed planting). The data emphasize the patchy nature of the

planting process plus the difficulty of diver-based sampling in
near zero visibility. September 2012 sampling gave comparable
mean values for density in areas A, B, and D (range ¼ 90–
120 oysters/m2) but lower density in area C (approximately 30

oysters/m2). In the September 2013 sampling, with patent tongs,
all densities were reduced to approximately 20–30 oysters/m2.
Figure 3B, and C portrays density (l/m2) of shell associated with

live oyster and blank shell, respectively. The former is a direct
product of seed oyster planting whereas the latter originates in
both the initial shell deployment and, in areas A and D, shell

overlay. The standard errors shown in Figure 3B again indicate
the patchiness of seed oyster planting. The time course of
decreasing density of oysters in Figure 3A illustrates mortality;
however, the live associated shell volumes of surviving oysters

remain reasonably stable over time as increasing individual size
offsets decreasing numbers. The shell overlay in area A pro-
duced a notably higher shell density (25 l/m2) in April 2012 than

at subsequent samplings (8–9 l/m2). Area B demonstrates little
variation in shell over the time course of the study. Both areas C
and D demonstrate marginally higher shell densities in Septem-

ber 2012 than in either April 2012 or September 2013. These
mid-study increases may have been in part reflective of addition
of shell by mortality of growing oysters. In the same manner,

mortality between September 2012 and 2013 (Fig. 3A) would
contribute to changes in the shell resources as illustrated in the
September 2013 values shown in Figure 3C.

Figures 4–7 summarize changes in population demographics

(as percentage in size category versus SL in 5-mm intervals) for
the four experimental areas (A–D, respectively, in sequence) for
the three monitoring dates.

A clear progression of growth in the population is evident in
area A (shell overlay) over the time course of the study (Fig. 4).
Note again that the initial seed planting contained 2-y classes of

recruitment, 2010 and 2011, and were planted in early 2012.
Thus, no growth would be expected in calendar 2012 prior to
planting. The 2010 class is notable as a presence between 56 and
76 mm SL with a mode at 61–65 mm SL. This is commensurate

with growth expectancy for the James River as described by
Mann et al. (2009). The 2011 class has a presence between 20
and 55 mm SL with highest abundance in the 26–45 mm SL

range. By September 2012, the demographic spread from 46–
100 mm SL with size classes through 85 mm SL all being well
represented. Approximately 32% were in excess of the market

size of 76 mm SL. The smallest of the 2010 class had ‘‘merged’’
with the largest of the 2011 class by the September 2012 sampling.
By September 2013, essentially all oysters were in excess of 60mm

SLwith the major peak occupying broad distribution between 70
and 120 mm SL—approximately 80% were in excess of the
market size of 76 mm SL.

Area B (no shell overlay) illustrated similar postplanting

demographics to areaAbutwith additional oysters in the 50–70mm
SL classes suggesting some inclusion of 2009 class individuals in
the James River seed (Fig. 5). By September 2012, the dominant

size classes were between 51 and 90 mm SL, with 28% at market
size and another 12% in the 71–75 mm SL range. By September
2013, approximately 80% were at market size with the 86–

95 mm SL classes being the largest by percentage.
Area C (no shell overlay) had similar demographics to area

A post planting (Fig. 6). By Fall 2012, the demographic had

Figure 3. (A) Changes in absolute density (mean % SEM/m2, all size

classes included), (B) live shell volume (l/m2), and (C) blank shell volume

(l/m
2
) for three monitoring dates. April 2012 (n values for A$ 6, B$ 8,

C$ 7, and D$ 6) and September 2012 (n values for A$ 5, B$ 4, C$ 4,

and D$ 7) by diver (0.25 m2 quadrat) and September 2013 by patent tong

(1.0 m2, n$ 10 all sites). Areas: A, low predation with shell overlay; B, low

predation with no shell overlay; C, high predation with no shell overlay;

and D, high predation with shell overlay.

OYSTER PLANTING AND COWNOSE RAYS 131

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 11 May 2022
Terms of Use: https://bioone.org/terms-of-use	Access provided by National Oceanic and Atmospheric Administration Central Library



notable representation in all size classes between 41 and 80 mm
SL, with 22%of the total at or abovemarket size. By September

2013, 35% were still below market size, although 14% were in
the 71–75 mm SL class, just below market size. The dominant
size classes were between 71 and 85mmSL, representing 43%of

the total demographic. Only 33% were 86 mm SL or larger,
compared with 55% for the same size interval in area B.

Area D (shell overlay) had, again, similar demographics to
area A post planting (Fig. 7). By September 2012, only 14%

were above market size with dominant size classes at 51–60 and
71–75 mm SL representing 50% of the total demographic. By
September 2013, 38% remained below market size with the 76–

95 mm SL classes representing 52% of the total demographic.
Growth progression was observed in all areas, although the

percentages at or above market size by the September 2013

preharvest sampling were greater in areas A and B (80% in
both) than in areas C and D (65% and 62%, respectively).

Oyster harvest was completed in late December 2013 and

early January 2014 (Table 1). A total of 2,160.5 bushels (106m3)
of oysters were harvested. Given that 4,828 bushels of seed
oysters were initially planted, the return is 0.45 bushels of
market oysters for each bushel of seed planted. This is a typical

industry return. Overall survival from seed to harvest requires
an estimate of market oysters per bushel. A typical value for
76 mm SL oysters is 350/bushel or 756,175 market oysters. This

value may be high given the large size of oysters in a subsample
collected at final harvest (Table 2). Using the 350/bushel
estimate gives a value of (756,175/4,876,280) 0.155 or 15.5%

survival from seed to harvest size. Two features of the data in
Table 1 are notable. The first is the decrease in harvest per day
(catch per unit effort) in successive harvest days when full days
of effort were focused on a particular area. This is to be

expected. When plotted as catch per unit effort versus day of
effort (not shown), these data decline in a linearmanner for each
area in agreement with the expectation of a Leslie–DeLury

estimator (Leslie & Davis 1939, DeLury 1947). The second
feature is the marked difference in total harvest among the four
areas.

Consideration of the differences in harvest by area (Table 1)
is a stepwise process. The initial examination focused on
planting area, harvest, and presence or absence of overlay.

The upstream area with shell overlay (A) had an initial area of
0.52 acres and produced 229.5 bushels (11.3 m3) of oysters.

The upstream area without shell overlay (B) had an initial area
of 1.06 acres and produced 1,018.5 bushels (50.14 m3). The
downstream area without shell overlay (C) had an initial area
of 1.13 acres and produced 713.5 bushels (35.1 m3) of oysters.

The downstream area with shell overlay (D) had an initial area
of 1.06 acres and produced 199 bushels (9.8 m3) of oysters.
When expressed as per acre production values these are as

follows: upstream with shell overlay (A) at 441 bushels/acre
(8.8 m3/hectare), upstream without shell overlay (B) at 961
bushels/acre (19.2 m3/hectare), downstream without shell

overlay (C) at 631 bushels/acre (12.6 m3/hectare), and down-
stream with shell overlay (D) at 188 bushels/acre (9.25 m3/
hectare). These mean values are strongly indicative that a shell
overlay is not conducive to oyster production. Meat yields are

an industry measure of shucked wet tissue per bushel of oysters
harvested. This is a volume:volume ratio typically in units of
U.S. pints (1 pint ¼ 0.473 l) per Virginia bushel (49.23 l).

Harvests from individual areas were not separated in sub-
sequent processing. Daily yields varied between 5.87 and 7.08
pints/bushel with a weighted mean for the complete harvest of

6.21 pints/bushel.
As noted in the Materials and Methods section, the actions

of sand migration, siltation, burial, and/or physical movement

of seed by tidal and storm action must be considered with
respect to the postharvest survey results. The revised estimates
of coverage for areas C and D are 0.8 and 0.37 acres (0.32 and
0.15 hectares), respectively (see also Fig. 2B). This represents

29% and 65% reductions in coverage respectively for areas C
andD. Area C and especially areaD are subject to northeasterly
winds and storm events. Thus, some loss of bottom coverage on

the northerly flank of area D is explained. Oysters may have
moved as part of associated bed transport from the southern
flank of area D to area C. Some shell was noted beyond the

western boundary of area C as would be expected from such
wind stress. Perimeter losses on both the western and eastern
flanks of area D and the southern corner of area C appear to be
related to sand movement in shallow water. The western

(deeper) boundary of area A was not substantially revised to
lower the final coverage for area A. Nonetheless, sedimentation

Figure 4. Population demographics in area A (low predation, with shell

overlay).

Figure 5. Population demographics in area B (low predation, no shell

overlay).
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appears to have been prevalent across the entire footprint of
area A where shell was much less prevalent in the final survey

than for area B. The revised final densities at the time of harvest
were recalculated as follows. Area A (shell overlay) maintained
at 0.52 acres and produced 229.5 bushels of oysters. Area B (no

shell overlay) maintained at 1.06 acres and produced 1,018.5
bushels. Area C (no shell overlay) decreased to 0.8 acres (0.32
hectares) and produced 713.5 bushels of oysters. Area D (shell
overlay) decreased to 0.37 acres (0.15 hectares) and produced

199 bushels of oysters. When expressed as per acre production
values, the final densities are as follows: A at 441 bushels/acre, B
at 961 bushels/acre, C at 892 bushels/acre, andD at 537 bushels/

acre (8.8, 19.2, 17.8, and 10.7 m3/hectare, respectively). Again,
the data demonstrate higher spatial production in areas without
initial shell overplanting.

Ray predation on oysters leaves distinct clean breaks in
crushed shell signatures. Examples are shown in Figure 8 from
the September 2013 sampling using patent tongs. Field obser-

vations fromDecember 16 to 17, 2013, are summarized in Table
2. Critical in this summary is a consideration of the topography
of the bottom within the study areas as well as that data were
purposely collected on the first two days of the harvest activity.

During December 16–17, 2013, harvesters towed dredges
over the main bodies of the areas to break any crustal formation
that had developed in the near 2 y undisturbed period since seed

planting. The nature of the harvest data in Table 2 does not
allow comprehensive statistical comparisons—the n values of
tows are modest at three dredge tows sampled for each area

for each of the sampling days. In all instances, bushels of
oysters per tow retained were in the range 0.9–1.6 inclusive of
all areas on both days. Area A had a mean of 262 oysters/
bushel (5.3/l both days) compared with 211 oysters/bushel

(4.3/l) for area B, indicating larger oysters in area B where
overlay was absent. This observation is in agreement with the
September 2013 patent tong data. The number of signatures

per bushel of collected material was not reduced by the
presence of a shell overlay. The mean value (14.4/bushel) for
area A was the highest of the four treatments compared with

only 3.9/bushel in the adjacent area B. A value of 12.4/bushel
was observed on December 16, 2013, in area C, but this was
reduced to 3.9 the following day. Similarly, the observation for

area D decreased from 5.9 to 1.9/bushel from December 16 to
17, 2013. This range of values corresponds to mortality
values, estimated from signatures and oyster per bushel

values, from 1.45% (low) to 7.9% (high) that can be ascribed
to ray predation on market size oysters in the current study.
Of final and additional note is the concordance between
volumes of oysters and shell retained in each tow (fifth and

sixth columns in Table 2). The general parity of these values is
in general agreement with the September 2013 data illus-
trated in Figure 3B, C.

A total of five adult cownose rays, four females and one
male, were collected from experimental plots in June–July
2012; three from the outside plots and two from the inside

plots (Table 3). Two of the females (rays 3 and 4) were carrying
near-term embryos, both males with disc widths of 39 and 41.5
mm, respectively. The stomachs and spiral valves of each
cownose ray were analyzed for prey items. Some teleost

Figure 6. Population demographics in area C (high predation, no shell

overlay).

Figure 7. Population demographics in area D (high predation, with shell

overlay).

TABLE 1.

Daily oyster harvest, in bushels, for experimental areas (A–D)

from December 16, 2013 to January 9, 2014.

Date A B C D Total Yield

December 16, 2013 11 134 119.5 11 275.5 6.12

December 17, 2013 0 139.5 126 0 265.5 6.12

December 18, 2013 136 121 0 0 257 6.07

December 19, 2013 0 111 135.5 0 246.5 6.45

December 20, 2013 0 121 124 0 245 5.87

December 23, 2013 0 98 0 112.5 210.5 5.87

December 21, 2013 0 92.5 79 0 171.5 6.25

December 26, 2013 0 73 64 0 137 6.33

December 27, 2013 0 64 0 53.5 117.5 6.33

December 30, 2013 0 33 37 0 70 6.74

December 31, 2013 31.5 0 28.5 0 60 6.74

January 2, 2014 27 31.5 0 0 58.5 6.74

January 9, 2014 24 0 0 22 46 7.08

Total (bushels) 229.5 1,018.50 713.5 199 2,160.5 –

Total (m3) 11.3 50.1 35.1 9.8 106.4 –

Yield data are in pints of meat/bushel of harvested oyster (see text for

additional details).
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remains were present, but were identified as bait (Brevoortia
tyrannus) and not considered a prey item. Examination of
spiral valves in conjunction with stomachs provided better
enumeration of hard-bodied prey in cownose ray diet. Most

prey flesh remnants found in the spiral valve were beyond
recognition due to advanced digestion. Retention of nondiges-
tible hard parts of certain prey in the spiral valve was largely

identifiable to at least prey category and some to species level.
From the five rays collected, stomachs were completely

empty in rays 1, 2, and 5, with only a small quantity (0.42 g) of

detritus (woody) found in the stomach of ray 4. The spiral
valves of rays 2 and 5 were also completely empty. Prey items
were found in the stomach of ray 3 and in the spiral valves of

rays 1, 3, and 4 (Table 4). Though the sample size was small in
this study, prey items were dominated by thin-shelled bivalves

[Tagelus plebius (Lightfoot, 1786), Ischadium recurvum
(Rafinesque, 1820), and Mercenaria mercenaria] and crusta-
ceans [Callinectes sapidus, Eurypanopeus depressus (Milne-
Edwards, 1880), and Rhithropanopeus harrisii (Gould, 1841)].

Oysters were not observed as a primary prey item.
The weight and volume of stomach and spiral valve

content, when present, was relatively small with little to no

soft tissue of prey items remaining. Hard structure of prey
items (bivalve shell, crustacean exoskeleton) dominated con-
tent. These observations, together with those of stomachs and

spiral valves void of content, suggest that rays may have been
harvested between feeding periods. In such situations, soft-
bodied prey items would have already been digested. This

appears to be the case in each of the samples collected in
this study in that no benthic worms were represented. A

TABLE 2.

Oyster harvest dredge tows on December 16 and 17, 2013: oyster and shell abundance and signatures of ray predation.

Area Date Overlay Y/N Oysters (no./bu) Oysters (bu/tow) Shell (bu/tow) Signature (no./bu)

A December 16, 2013 Y 230 1.2 1.0 18.1

December 17, 2013 Y 294 1.1 1.0 10.4

All Y 262 1.2 1.0 14.4

B December 16, 2013 N 287 1.5 0.8 4.1

December 17, 2013 N 235 1.8 1.0 3.8

All N 211 1.6 0.9 3.9

C December 16, 2013 Y 79 0.9 1.7 12.4

December 17, 2013 Y 64 1.1 1.2 3.9

All Y 0 1.0 1.4 7.7

D December 16, 2013 N 37 1.6 0.7 5.9

December 17, 2013 N 28.5 1.4 1.2 1.9

All N 0 1.5 0.9 4.0

Y, yes; N, no; bu, bushel. Values are means of three dredge tows for each area on each date.

Figure 8. Ray predation signatures in shells of consumed oysters collected from the experimental areas in September 2013.
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comparison of prey diversity between areas is limited because

rays 1 and 5 (collected from inside plots) were devoid of prey
items in their stomachs; however, Tagelus sp. was recorded in
both the spiral valve of ray 5 and rays 3 and 4 collected from

outside plots. In this study, Brevoortia and Callinectes items
found in rays were most likely the result of bait ingested upon
capture.

DISCUSSION

Natural oyster reefs have complex vertical topography
with a base of consolidated shell and sediment and an overlay

of aggregated living material. Cownose ray�s general foraging
behavior would be challenged by such a cohesive structure.
Centuries of harvest have degraded and disaggregated natural

reefs in the Chesapeake Bay, and restorative reef rebuilding to
precolonial, three-dimensional complex aggregate form will
require decades of undisturbed natural growth. In the interim,

restoration is focused on building structure with addition of
oysters or simply rebuilding structure and allowing the natural
progression of recruitment, growth, and mortality to stabilize
and perpetuate the provided foundation. Thus, initial stages of

restoration often provide limited three-dimensional structure
and comparatively loose aggregation of underlying structure.
Any overlaying oysters would not be part of the cemented

structure and thus would be susceptible to cownose ray
foraging. Natural reefs are not and have not historically been
the only source of harvested oysters in Virginia. The surveys of

Baylor (1894) outlined the boundaries of the ‘‘natural oyster
beds, rocks, and shoals’’ for public harvest (common property
doctrine, accessed through purchase of a license from the
Commonwealth of Virginia). In addition, approximately

100,000 acres (40,000 hectares) of bottom area outside the Baylor
designated natural beds, rocks, and shoals have been available
for private leasing for oyster culture for over a century and have

beenmajor contributors to the overall oyster production formost
of that period.

Leasable areas generally range in bottom type from hard

sand to sand-mud mixes and are devoid of natural oyster
reefs. Prior to planting of seed, lease areas are typically
prepared with a shell substrate as a foundation for the

subsequent seed. Again, these constructs, like the early stages
of restoration described above, are not consolidated aggre-
gates and are therefore susceptible to cownose ray foraging.

Oysters were not observed as a primary prey item in rays
collected in this study, an observation in agreement with

findings from a more comprehensive study of rays feeding
near commercial oyster grounds by Fisher (2010). Although
rays may prefer thinner shelled bivalves that can be exposed
frommud and sand substrates by the combined action of their

wings and mouthparts, the presence of predation signatures in
oyster shells collected in the present study indicate vulnera-
bility of oyster seed on planted areas, be they in restoration or

commercial culture operations. What is evident in the current
study is that the shell overlays do not confer protection from
ray foraging and that any investment in such overlays will not

reap improved economic returns at harvest or survival in
restoration mode. What is also evident in this study is the
critical nature of the interaction between site location, sub-
strates and local physics to long-term stability of the com-

bined shell foundation—oyster seed planting construct from
initial deployment to harvest.

Natural reefs acquire their characteristic shape over de-

cades to centuries as part of a continuing interplay with
currents, tides, storm events, and sea level rise. Neither
restoration practitioners nor oyster culturists have the luxuries

of time and resources to emulate natural structures for their
focused needs. Nonetheless, the loss of stable bottom to oyster
culture as observed in area D within the time frame of the

current study underscores the importance of location-specific
knowledge to insuring a successful outcome of either restora-
tion or culture activity. Finally, the interplay of provision of
substrate for oyster restoration and culture with preference of

rays for feeding on thin-shelled bivalves requires careful
thought. A general reduction in these preferred prey items
in combination with artificial (shell plants with seed oysters)

aggregations of oysters will continue to provide feeding
options for rays on oysters when preferred prey are sparse
or absent. These substrates do, however, provide both

TABLE 3.

Summary of cownose rays collected near the experimental
areas in June and July 2012 for stomach content analysis.

Ray no.

Date

collected Sex DW (mm)

Plot

(inside/outside)

Embryo

present (Y/N)

1 June 21 F 98 Inside N

2 June 25 M 83.5 Outside N/A

3 June 25 F 99 Outside Y

4 June 25 F 98 Outside Y

5 July 18 F 101.5 Inside N

DW, disc width; F, female; M, male; Y, yes; N, no; N/A, not applicable.

Inside plots are those upriver of the constriction (areas A and B) and

outside plots are those downriver of the constriction (areas C and D) as

discussed in the Materials and Methods section.

TABLE 4.

Content of cownose ray stomachs and/or spiral valves collected

near the experimental areas in June and July 2012 by weight (g)
and percentage (%) of total.

Ray no. Content

Stomach

(g/%)

Spiral

valve (g/%)

1 Soft-shell clam (unidentified shell) – 4.03/99

Detritus (woody) – 0.04/1

3 Hard clam (Mercenaria mercenaria) 2.55/57 –

Soft-shell clam (Tagelus spp.) 0.66/15 2.18/12.4

Fish (Brevoortia tyrannus) 0.28/28 –

Hooked mussel (Ischadium recurvum) – 11.25/64

Blue crab (Callinectes sapidus) – 0.20/1

Mud crab (Eurypanopeus depressus) – 0.14/0.3

Mud crab (Rhithropanopeus harrisii) – 0.06/0.8

Detritus (plant matter) – 0.25/1.4

Rock (2-mm pebbles) – 0.09/0.5

Unidentified shell and soft tissue – 3.45/19.6

4 Crab body parts, blue crab – 2.77/32

Hooked mussel (I. recurvum) – 1.87/21

Soft-shell clam (Tagelus spp.) – 1.2/14

Unidentified thin shell and soft tissue – 2.1/24

Fish (B. tyrannus) – 0.82/9
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recruitment surfaces for attached preferred prey such as

Ischadium and protection for early recruits of infaunal, thin

or thinner shelled species such as Tagelus andMercenaria. The

pre-study surveys noted a general absence of these species, yet

by the end of the study Ischadium in particular was abundant

in the shallower portions of the experimental areas. Ironically,

these long-term or culture restoration structures may provide

enhancement for ray-preferred prey species only to insure that

when the latter are depleted the rays will turn their attention to

the less preferred but abundant oysters.
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